Web page clustering using a self-organizing map of user navigation patterns

نویسندگان

  • Kate Smith-Miles
  • Alan Ng
چکیده

The continuous growth in the size and use of the Internet is creating difficulties in the search for information. A sophisticated method to organize the layout of the information and assist user navigation is therefore particularly important. In this paper, we evaluate the feasibility of using a self-organizing map (SOM) to mine web log data and provide a visual tool to assist user navigation. We have developed LOGSOM, a system that utilizes Kohonen’s self-organizing map to organize web pages into a two-dimensional map. The organization of the web pages is based solely on the users’ navigation behavior, rather than the content of the web pages. The resulting map not only provides a meaningful navigation tool (for web users) that is easily incorporated with web browsers, but also serves as a visual analysis tool for webmasters to better understand the characteristics and navigation behaviors of web users visiting their pages. D 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Web Page Access Prediction Using Fuzzy Clustering by Local Approximation Memberships (flame) Algorithm

Web page prediction is a technique of web usage mining used to predict the next set of web pages that a user may visit based on the knowledge of previously visited web pages. The World Wide Web (WWW) is a popular and interactive medium for publishing the information. While browsing the web, users are visiting many unwanted pages instead of targeted page. The web usage mining techniques are used...

متن کامل

Self-organizing map based web pages clustering using web logs

A Web-based business always wants to have the ability to track users’ browsing behavior history. This ability can be achieved by using Web log mining technologies. In this paper, we introduce a Self-Organizing Map (SOM) based approach to mining Web log data. The SOM network maps the web pages into a two-dimensional map based on the users’ browsing history. Web pages with the similar browsing pa...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

Clustering Web Usage Data using Concept Hierarchy and Self Organizing Map

Clustering Web Usage data is one of the important tasks of Web Usage Mining, which helps to find Web user clusters and Web page clusters. Web user clusters establish groups of users exhibiting similar browsing patterns and Web page clusters provide useful knowledge to personalized Web services. Different types of clustering algorithms such as partition based, distance based, density based, grid...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Decision Support Systems

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2003